A Novel Lignan and Flavonoids from Polygonum aviculare

Hyoung Ja Kim, Eun-Rhan Woo, and Hokoon Park
J. Nat. Prod., 1994, 57 (5), 581-586• DOI:
10.1021/np50107a003 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 4, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/np50107a003 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

A NOVEL LIGNAN AND FLAVONOIDS FROM POLYGONUM AVICULARE

Hyoung Ja Kim, Eun-Rhan Woo, and Hokoon Park*
Organic Chemistry Laboratory I, Division of Applied Sciences, Korea Institute of Science and Technology, P.O. Box 131 Cheongryang, Seoul 136-650, Korea

Abstract

A new lignan glycoside, aviculin [1], was isolated from the whole plant of Polygonum aviculare along with the known compounds juglanin [2], avicularin [3], astragalin [4], and betmidin [5]. The structure of the new compound was elucidated on the basis of spectroscopic and chemical evidence.

Polygonum aviculare L. (Polygonaceae) is a medicinal plant frequently employed in Korean traditional medicine. The whole plant has been used as an antipyretic, antiparasitic, and diuretic agent (1,2). This paper deals with the structural elucidation of a new lignan glycoside, aviculin [1], and the isolation from this plant of four flavonoid glycosides (35), juglanin [2], avicularin [3], astragalin [4], and betmidin [5].

RESULTS AND DISCUSSION

The EtOAc-soluble fraction of the aqueous MeOH extract afforded $\mathbf{1}, \mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{10}$, amorphous powder, mp $155-157^{\circ},[\alpha]^{25} \mathrm{D}+20.27^{\circ}(c=0.074, \mathrm{MeOH})$. On acetylation with $\mathrm{Ac}_{2} \mathrm{O}$ and pyridine, compound $\mathbf{1}$ afforded a hexaacetate $\{\mathbf{1} \mathbf{a}]$, as an oily compound (6).

Acidic hydrolysis of compound 1 yielded L-rhamnose and an aglycone having identical specific rotation and eims data with those of $(+)$-isolariciresinol $[\mathbf{1 b}]$ (7). The cd of the aglycone was a mirror image to that of (-)-isolariciresinol (8), with known absolute configuration (9), and also in agreement with published cd data of (+)isolariciresinol dimethyl ether (10). The eims spectrum of compound 1 showed a molecular ion peak at m / z 506, besides significant fragment peaks at $m / z 359$ $[\mathrm{M} \text {-rhamnose }]^{+}, 341\left[\mathrm{M} \text {-rhamnose }-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 311\left[\mathrm{M} \text {-rhamnose- } \mathrm{H}_{2} \mathrm{O}-\mathrm{OCH}_{2}\right]^{+}$,

$1 \quad \mathrm{R}_{1}=\boldsymbol{\alpha}$-L-Rhamnopyranosyl, $\mathrm{R}_{2}=\mathrm{H}$
1a $\mathrm{R}_{1}=$ Tri- O-acetyl- α-L-rhamnopyranosyl, $\mathrm{R}_{2}=\mathrm{Ac}$
1b $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}$

$2 \mathrm{R}_{1}=\alpha$-L-Arabinofuranosyl, $\mathrm{R}_{2}=\mathrm{R}_{2}{ }^{\prime}=\mathrm{H}$, $\mathrm{R}_{3}=\mathrm{OH}$
$3 \quad \mathrm{R}_{1}=\alpha$-L-Arabinofuranosyl, $\mathrm{R}_{2}{ }^{\prime}=\mathrm{H}, \mathrm{R}_{2}=$ $\mathrm{R}_{3}=\mathrm{OH}$
3a $\mathrm{R}_{1}=$ Tri-O-acetyl- α-L-arabinofuranosyl, $\mathrm{R}_{2}{ }^{\prime}=\mathrm{H} \quad \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{OAc}$
$4 \mathrm{R}_{1}=\beta$-D-Glucopyranosyl, $\mathrm{R}_{2}=\mathbf{R}_{2}{ }^{\prime}=\mathrm{H}$, $\mathrm{R}_{3}=\mathrm{OH}$
$5 \mathrm{R}_{1}=\boldsymbol{\alpha}$-L-arabinofuranosyl, $\mathrm{R}_{2}=\mathrm{R}_{2}{ }^{\prime}=\mathrm{R}_{3}=\mathrm{OH}$
5a $\mathrm{R}_{1}=$ Tri-O-acetyl- $\alpha-I$-arabinofuranosyl, $\mathrm{R}_{2}=\mathrm{R}_{2}{ }^{\prime}=\mathrm{R}_{3}=\mathrm{OAc}$
and 279 [M - rhamnose $\left.-\mathrm{H}_{2} \mathrm{O}-2 \times \mathrm{OCH}_{3}\right]^{+}$. The ir spectrum of compound $\mathbf{1}$ showed characteristic absorption bands due to hydroxyl groups ($3449 \mathrm{~cm}^{-1}$) and aromatic double bonds (1598 and $1449 \mathrm{~cm}^{-1}$).

The ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum of compound $\mathbf{1}$ showed two peaks at $\delta 6.16(1 \mathrm{H}, \mathrm{s})$ and 6.66 ($1 \mathrm{H}, \mathrm{s}$) due to $\mathrm{H}-8$ and $\mathrm{H}-5$ of the tetrasubstituted aromatic ring, and peaks at $\delta 6.59$ (dd, $J=7.9$ and $1.8 \mathrm{~Hz}, \mathrm{H}-6^{\prime}$), 6.75 (d, $J=7.9 \mathrm{~Hz}, \mathrm{H}-5^{\prime}$), and $6.63(\mathrm{~d}, J=1.8 \mathrm{~Hz}, \mathrm{H}-$ 2^{\prime}), ascribable to the 3 H ABX system of the 1 -phenyl- $3^{\prime}, 4^{\prime}$-disubstituted ring system $(11,12)$. The peaks at $\delta 3.81$ and 3.77 were attributed to the MeO groups at $\mathrm{C}-6$ and C 3^{\prime}. The signal of the anomeric proton was found at $\delta 4.51(\mathrm{~d}, J=1.5 \mathrm{~Hz})$ and the characteristic Me peak of rhamnose was observed as a doublet at $\delta 1.18(J=6.0 \mathrm{~Hz})$.

The structural assignment of 1 was further supported by 2D nmr studies using correlation spectroscopy (COSY). The signal at $\delta 3.34$ (H-4") showed a cross-peak with a methine signal at $\delta 3.51\left(\mathrm{dd}, J=6.0\right.$ and 9.0 Hz , which was assigned to $\mathrm{H}-5^{\prime \prime}$. Crosspeaks between $\mathrm{H}-4^{\prime \prime}$ and $\mathrm{H}-3^{\prime \prime}$ were also observed. $\mathrm{A}^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ HETCOR experiment on $\mathbf{1}$ indicated a carbon count of 26 carbons and a hydrogen count of 28 carbon-bound hydrogens. In order to determine the position of attachment and configuration of the Lrhamnose moiety, the ${ }^{13} \mathrm{C}$-nmr spectra of $\mathbf{1}$ and $\mathbf{1 a}$ were studied. Aviculin hexaacetate [1a] exhibited ${ }^{13} \mathrm{C}$-nmr signals assignable to the carbons of the aglycone moiety at the δ values shown in Table 1; except for the $\mathrm{C}_{2 \alpha}$ carbon, each signal was essentially the same as the signal of the corresponding carbon of $(+)$-isolariciresinol tetraacetate (13), suggesting that the L-rhamnose moiety is attached at the $\mathrm{C}_{2 \alpha} \mathrm{H}_{2} \mathrm{OH}$ group as $\alpha-\mathrm{L}-$ rhamnose. The glucosidation shifts $(14,15)$ of tetra- O-acetyl glucopyranoside on the α carbon of the $\mathrm{R}-\mathrm{CH}_{2} \mathrm{OH}$ group were reported as $+6 \sim+7 \mathrm{ppm}$ and the acetylation shift (16) on the α-carbon of the $\mathrm{R}-\mathrm{CH}_{2} \mathrm{OH}$ group has been reported as +1.6 ppm . On the assumption that the glucosidation shift is similar to the rhamnosidation shift, the calculated δ values of the ${ }^{13} \mathrm{C}$-nmr chemical shift of the $\mathrm{C}_{2 \alpha}$ and $\mathrm{C}_{3 \alpha}$ carbons of (+)-isolariciresinol-2 α, α-L-rhamnopyranoside hexaacetate could be $\delta 67.4 \sim 68.4 \mathrm{ppm}$

Table 1. ${ }^{13} \mathrm{C}-\mathrm{Nmr}$ Data for $\mathbf{1}$ and $\mathbf{1 a}(75.4 \mathrm{MHz}, \delta$ in ppm$) .{ }^{2}$

C	$(+)$-Isolariciresinol ${ }^{\text {b }}$	1	1a	C	1	1a	Methyl-$\alpha-1-$ rha. ${ }^{\text {s }}$
1	47.4	48.3 (d)	47.0	1"	102.3 (d)	103.4	102.4
2	47.5	45.5 (d)	43.9	$2^{\prime \prime}$	72.3 (d)	69.2	71.9
3	39.5	40.0 (d)	35.3	3"	72.5 (d)	69.9	72.5
4	32.8	33.6 (t)	33.2	4 "	73.8 (d)	70.9	73.6
5	110.6	112.4 (d)	111.9	5 "	70.1 (d)	67.0	69.4
6	147.1	149.2 (s)	149.5	6 "	17.9 (q)	17.3	18.4
7	144.1	146.1 (s)	138.1	OCOCH_{3}	-	20.9, 20.7	
8	115.8	117.1 (d)	123.7	OCOCH_{3}	-	168.9	
9	136.8	138.1 (s)	131.5			169.1	
10	127.2	128.9 (s)	134.1			169.9	
1^{\prime}.	132.6	133.9 (d)	138.5			170.0	
2^{\prime}.	112.0	113.4 (d)	113.3			170.1	
	145.2	147.2 (s)	151.3			171.1	
4'...	143.5	145.2 (s)	142.8				
5'..	114.5	116.1 (d)	123.0				
$6{ }^{\prime}$	121.9	123.2 (d)	121.5				
$2 \boldsymbol{\alpha}$	62.1	67.9 (c)	67.2				
3 a	65.7	65.3 (r)	66.0				
OMe	55.6	56.3 (q)	56.0				

${ }^{2}$ Multiplicities were determined from DEPT spectra. Abbreviations: s, singlet; d, doublet; t , triplet; q, quartet. Solvent: compound 1 in $\mathrm{CD}_{3} \mathrm{OD}$, compound 1 a in CDCl_{3}.
${ }^{\text {b Data taken from Fonseca et al. (13). }}$
'Data taken from Seo et al. (17).
[63.0-1.6+6(or 7)] and $\delta 66.2 \mathrm{ppm}$, respectively, and the calculated ${ }^{13} \mathrm{C}-\mathrm{nmr}$ chemical shift of the $\mathrm{C}_{2 \alpha}$ and $\mathrm{C}_{3 \alpha}$ carbons of (+)-isolariciresinol- $3 \alpha, \alpha-\mathrm{L}$-rhamnopyranoside hexaacetate could be $\delta 63.0 \mathrm{ppm}$ and $\delta 70.6 \sim 71.6 \mathrm{ppm}[66.2-1.6+6$ (or 7)], respectively. Compound $1 \mathbf{1 a}$ exhibited ${ }^{13} \mathrm{C}$-nmr signals of the carbons of the $\mathrm{CH}_{2} \mathrm{OR}$ groups at $\delta 67.2 \mathrm{ppm}$ and at $\delta 66.0 \mathrm{ppm}$. Compound $\mathbf{1}$ also exhibited ${ }^{13} \mathrm{C}-\mathrm{nmr}$ signals of the α-L-rhamnose moiety at the δ values shown in Table 1, each of which is equal to that of the corresponding carbon of methyl α-L-rhamnopyranoside (17), suggesting that the L -rhamnose moiety is present on the aglycone of $\mathbf{1}$ as α-L-rhamnopyranoside. The non-aromatic carbons of $\mathbf{1}$ were divided into two groups on the basis of their signal multiplicities from the distortionless enhancement by polarization transfer (DEPT) experiment, which showed triplets at $\delta 33.62,65.32$, and 67.90 and doublets at $\delta 40.02$, 45.47 , and 48.33 . Among them, the signal at $\delta 33.62$ was assigned to $\mathrm{C}-4$ and the methine signals at $\delta 40.02,45.47$, and 48.33 were assigned by comparison with the literature values reported for $(+)$-isolariciresinol (13). The signal at $\delta 48.33$, which is practically unaffected by shielding effects, can be assigned to C-1. Carbon-2 (C-2), which suffered an α-effect by C-2 α, and two β-effects by C- 3α and by the benzene ring, should be deshielded in comparison to $\mathrm{C}-3$ (13); these carbons were assigned to the signals at $\delta 45.47$ and 40.02 , respectively. These spectroscopic and chemical results led us to propose the structure of $\mathbf{1}$ as isolariciresinol rhamnopyranoside, to which we have accorded the trivial name, aviculin.

The ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectral data of four flavonoid glycosides [2-5] isolated from the EtOAc-soluble fraction of P. aviculare are also summarized in Tables 2 and 3. Among them, astragalin [4] and bermidin [5] were isolated from this plant for the first time.

EXPERIMENTAL

General experimental procedures.-Si gel ($230-400$ mesh, Merck) was used for cc, and Si gel F_{254} (Merck) plates were used for tlc. [Solvent systems: $\mathrm{A}, \mathrm{CHCl}_{3}-\mathrm{MeOH}$ ($7: 1$); $\mathrm{B}, \mathrm{CHCl}_{3}-\mathrm{Me}_{2} \mathrm{CO}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (15:8:2:0.5); $\left.\mathrm{C}, \mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(6: 1: 0.1)\right]$. H -Nmr spectra were determined on a Varian 300 MHz Gemini Ft-nmr. Standard Varian pulse programs were used for homonuclear COSY. ${ }^{13} \mathrm{C}-\mathrm{Nmr}$ and DEPT spectra were obtained on the same instrument at 75.4 MHz . The heteronuclear chemical shift correlation (C,H-COSY) experiment was performed with a Bruker 500 MHz . All nmr spectra were referenced to residual solvent as an internal standard: for $\mathrm{CD}_{3} \mathrm{OD}, 3.33 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}$, and 49.0 ppm for ${ }^{13} \mathrm{C}$, and for CDCl_{3}, 7.26 ppm for ${ }^{1} \mathrm{H}$. Mps were determined on an Electrothermal apparatus and are uncorrected. Optical

Table 2. ${ }^{\text {'H }} \mathrm{H}$-Nmr Data (in $\delta \mathrm{ppm}$) for Compounds 2-5. ${ }^{\text {. }}$

Proton	Compound			
	2	3	4	5
H-6	6.17 d (1.8)	6.19 d (1.8)	$6.18 \mathrm{~d}(1.8)$	6.19 d (2.0)
H-8	6.36 d (1.5)	6.37 s	6.38 d (2.1)	6.37 d (1.8)
H-2'	7.92 d (8.7)	7.52 d (2.1)	8.05 d (9.0)	7.12 s
H-3'	6.89 d (9.0)	-	6.87 dd (2.1, 8.7)	-
H-5'	6.89 d (9.0)	6.89 d (8.4)	$6.87 \mathrm{dd}(2.1,8.7)$	-
H-6'	7.92 d (8.7)	7.48 dd (1.6, 8.4)	8.04 d (9.0)	7.12 s
H-1"	5.46 s	5.46 s	5.23 d (7.5)	5.45 s
H-2"	4.30 d (3.0)	4.33 d (2.7)	$3.40 \mathrm{dd}(7.2,10.0)$	4.34 s
H-3"	3.89 dd ($3.0,5.1$)	3.89 dd (2.7, 4.8)	$3.25-3.40 \mathrm{~m}$	3.91 d (1.2)
H-4"	$3.79 \mathrm{dd}(4.2,8.9)$	$3.80 \mathrm{dd}(4.8,9.6)$	$3.25-3.40 \mathrm{~m}$	3.91 d (1.2)
H-5"	3.47 d (4.0)	$3.30 \mathrm{dd}(3.3,1.5)$	3.20 ddd (2.1, 5.1, 7.5)	3.51 d (1.2)
H-6"	-	-	$\begin{aligned} & 3.50 \mathrm{dd}(5.4,11.7) \\ & 3.71 \mathrm{dd}(2.1,11.7) \end{aligned}$	-

[^0]Table 3. ${ }^{13} \mathrm{C}$-Nmr Data for Flavonoids $2-5$ (in $\mathrm{CD}_{3} \mathrm{OD}, \delta \mathrm{in} \mathrm{ppm}$).

C	Compound							
	2	3	4	5	kaempferol ${ }^{2}$	quercetin ${ }^{2}$	Methyl-$\alpha-\mathrm{L}-\mathrm{ara}{ }^{\mathrm{b}}$	Methyl- β-D-glc ${ }^{\text {c }}$
2	158.5	159.3	158.6	158.6	146.8	146.9		
3	134.9	134.9	135.4	134.9	135.6	135.6		
4	179.8	179.9	179.4	180.0	175.9	175.7		
5	163.0	163.0	163.0	163.0	160.7	160.7		
6	99.9	99.9	100.2	100.0	98.2	98.2		
7	166.1	166.1	166.9	166.4	163.9	163.9		
8	94.8	94.8	95.1	94.9	93.5	93.4		
9	159.3	158.5	158.9	159.3	156.2	156.2		
10	105.6	105.6	105.5	104.9	103.1	103.0		
1^{\prime}	122.8	122.9	122.8	122.1	121.7	122.0		
2 '	131.9	116.8	132.3	109.5	129.5	115.3		
3'	116.5	146.3	116.0	146.8	115.4	145.0		
$4{ }^{\prime}$	161.5	149.8	161.5	138.0	159.2	147.6		
5'.	116.5	116.4	116.0	146.9	115.4	115.6		
6 '	131.9	123.1	132.3	109.5	129.5	120.0		
1 "	109.6	109.5	104.2	109.4			109.2	105.4
2 "	83.3	83.3	75.7	83.3			81.8	74.8
3 ".	78.6	78.7	78.4	78.9			77.5	78.1
4 ',	87.9	87.9	71.3	88.1			84.9	71.4
$5^{\prime \prime}$.	62.5	62.5	78.0	62.6			62.4	78.1
$6^{\prime \prime}$.			62.6					62.5

${ }^{2}$ Data taken from Markham et al. (18).
${ }^{\text {b }}$ Data taken from You et al. (19).
${ }^{\text {c }}$ Data taken from Seo et al. (17).
rotations were measured in a $3.5 \mathrm{~mm} \times 100 \mathrm{~mm}$ cell on a Jasco DIP- 360 polarimeter, and cd data were obtained with a J-600 spectropolarimeter (Jasco). The ir spectra were performed on a Mattson Polakis (Mattson Instruments, Inc.), and eims were determined using a Hewlett-Packard 5890 GC/5988 mass spectrometer at 70 eV .

Plant material--The whole plants of P. aviculare were collected in July 1991, in Taejon, Korea. Voucher specimens (No. 218-8) are deposited in the herbarium of the Korea Institute of Science and Technology.

EXTRACTION AND ISOLATION.-The fresh plants (840 g) were cut into small pieces and percolated three times with $70 \% \mathrm{MeOH}$ at room temperature to yield 140 g of a dark green residue on removal of solvent under reduced pressure. The $70 \% \mathrm{MeOH}$ extract was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$ to remove unnecessary lipids. The $\mathrm{H}_{2} \mathrm{O}$ solution was extracted with ErOAc followed by $n-\mathrm{BuOH}$. The combined EtOAc layer was evaporated under reduced pressure to yield 5.4 g of a residue. This residue (5 g) was divided into ten fractions by cc on Si gel (solvent systems $A \rightarrow B$). Fraction 3 was rechromatographed twice on Si gel to afford juglanin [2] and avicularin [3]. Fraction 5 was further fractionated by chromatography on Sephadex LH- 20 with MeOH to give 9 fractions. Fraction 5 b was further purified by chromatography on Si gel (solvent system C) to afford aviculin [1]. Fraction 5 c was purified further by prep. RP-18 tlc (Kieselgel $\mathrm{F}_{254} \mathrm{~S}, 0.25 \mathrm{~mm}, 20 \times 20 \mathrm{~cm}$) using $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ (6:4) to afford astragalin [4]. Fraction 6 was further fractionated by cc on Sephadex LH-20 with MeOH to give 8 fractions. Fraction be was further purified by cc on Si gel (solvent system C) to give betmidin [5].

Aviculin [1].-Amorphous powder: $\mathrm{mp} 155-157^{\circ},[\alpha]^{25} \mathrm{D}+20.27^{\circ}(c=0.074, \mathrm{MeOH})$; ir $v \max (\mathrm{KBr})$ $3449,2920,1598,1513,1449,1381,1285,1254,1128,1075 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.18$ $\left(3 \mathrm{H}, \mathrm{d}, J=6.0 \mathrm{~Hz}, \mathrm{H}-6^{\prime \prime}\right), 1.86(1 \mathrm{H}, \mathrm{brt}, J=10.2 \mathrm{~Hz}, \mathrm{H}-2), 2.02(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-3), 2.83(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}$, $\mathrm{H}-4), 3.10\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}_{\mathrm{a}}-2 \alpha\right), 3.34\left(1 \mathrm{H}, \mathrm{t}, J=9.0 \mathrm{~Hz}, \mathrm{H}-4^{\prime \prime}\right), 3.51\left(1 \mathrm{H}, \mathrm{dq}, J=9.0\right.$ and $\left.6.0 \mathrm{~Hz}, \mathrm{H}-5^{\prime \prime}\right), 3.62-$ $3.63\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-3 \alpha\right.$, overlapping with $\left.\mathrm{H}-3^{\prime \prime}\right), 3.63\left(1 \mathrm{H}, \mathrm{dd}, J=9.3\right.$ and $\left.3.3 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime}\right), 3.71(1 \mathrm{H}, \mathrm{dd}, J=11.0$ and $\left.3.7 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}-3 \alpha\right), 3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.80-3.82\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-2 \alpha\right.$, overlapping with OMe$)$, $3.84\left(1 \mathrm{H}, \mathrm{dd}, J=3.4\right.$ and $\left.1.6 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}\right), 3.85(1 \mathrm{H}, \mathrm{d}, J=10.4 \mathrm{~Hz}, \mathrm{H}-1), 4.51\left(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}\right)$, $6.16(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8), 6.59\left(1 \mathrm{H}, \mathrm{dd}, J=7.9\right.$ and $\left.1.8 \mathrm{~Hz}, \mathrm{H}^{\prime} 6^{\prime}\right), 6.63\left(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 6.66(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-$
5), $6.75\left(1 \mathrm{H}, J=7.9 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}$, see Table 1 ; eims $m / z[\mathrm{M}]^{+} 506(4), 359(46), 341$ (100), 311 (39), 279 (37), 189 (13), 175 (21), 137 (73).

Acid hydrolysis of 1.-A solution of aviculin [1] (2.6 mg) in $2 \mathrm{~N} \mathrm{HCl}(2 \mathrm{ml})$ was heated at 90° for 2 h . The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{ml})$ and extracted with ErOAc ($3 \times 3 \mathrm{ml}$). The combined organic layers were evaporated to dryness. The residue was purified by prep. tic [Kieselgel $\mathrm{F}_{254}, 1 \mathrm{~mm}$, $20 \times 20 \mathrm{~cm}$, using $\left.\mathrm{CHCl}_{3}-\mathrm{MeOH}(7: 1)\right]$ to afford isolariciresinol $[\mathbf{1 b}]\left(R_{f}=0.43\right):[\alpha]^{25} \mathrm{D}+63.8^{\circ}(c=0.000047$, $\mathrm{Me}_{2} \mathrm{CO}$); eims (70 eV) m/z[M] 360 (51), 311 (50), 284 (18), 255 (19), 241 (24), 211 (8), 187 (24), 175 (50), 137 (63), 91 (100), 55 (90). The aqueous layer was neutralized with KOH and extracted with \boldsymbol{n} - BuOH ($3 \times 3 \mathrm{ml}$). The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and evaporated to dryness, and L -rhamnose in the residue was identified by co-tlc with an authentic sample $\left[\mathrm{CHCl}_{3}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}\right.$ (6:4:1)].

Acetylationof 1.-Treatment of $\mathbf{1}(3 \mathrm{mg})$ with freshly distilled $\mathrm{Ac}_{2} \mathrm{O}(0.2 \mathrm{ml})$ and dry pyridine (0.2 ml) afforded 1a, after stirring at 25° for $12-14 \mathrm{~h}$. The reaction mixture was diluted with $\mathrm{H}_{2} \mathrm{O}$ and extracted with $\mathrm{ErOAc}(3 \times 3 \mathrm{ml})$. The combined organic layer was washed with saturated aqueous NaCl and dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product was purified by cc on Si gel to afford 4 mg of 1a: oily compound; ir $v \max (\mathrm{KBr}) 2957,2922,2852,1745,1508,1462,1389,1221,1151,1084,1049,910 \mathrm{~cm}^{-1} ;{ }^{\mathrm{T}} \mathrm{H} \mathrm{nmr}$ $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.16\left(3 \mathrm{H}, \mathrm{d}, J=6.1 \mathrm{~Hz}, \mathrm{H}-6^{\prime \prime}\right), 1.8-2.1(2 \mathrm{H}, \mathrm{H}-2$ and $\mathrm{H}-3$, overlapping with OAc), $1.99(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.05(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.09(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.15(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.23(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.31(3 \mathrm{H}$, $\mathrm{s}, \mathrm{OAc}), 2.93(2 \mathrm{H}, \mathrm{d}, J=7.7 \mathrm{~Hz}, \mathrm{H}-4), 3.18\left(1 \mathrm{H}, \mathrm{dd}, J=2.8\right.$ and $\left.9.9 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}-2 \boldsymbol{\alpha}\right), 3.6-3.7\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-\mathrm{s}^{\prime \prime}\right.$, overlapping with OMe), $3.77(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.81(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 3.8-3.9\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{b}}-2 \alpha\right.$, overlapping with $\mathrm{OMe}), 4.06(1 \mathrm{H}, \mathrm{d}, J=10.9 \mathrm{~Hz}, \mathrm{H}-1), 4.17\left(1 \mathrm{H}, \mathrm{dd}, J=6.0\right.$ and $\left.11.2 \mathrm{~Hz}, \mathrm{H}_{2}-3 \alpha\right), 4.29(1 \mathrm{H}, \mathrm{dd}, J=3.4$ and $\left.11.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}-3 \alpha\right), 4.59\left(1 \mathrm{H}\right.$, br s, $\left.\mathrm{H}-1^{\prime \prime}\right), 5.05\left(1 \mathrm{H}, \mathrm{dd}, J=9.5 \mathrm{~Hz}, \mathrm{H}-4^{\prime \prime}\right), 5.21-5.26\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime \prime}\right.$ and $\mathrm{H}-$ $\left.3^{\prime \prime}\right), 6.40(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8), 6.71-6.74\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}-2^{\prime}, \mathrm{H}-5\right.$, and $\left.\mathrm{H}-6^{\prime}\right), 6.98\left(1 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right) ;{ }^{13} \mathrm{C} \mathrm{nmr}$, see Table 1.

Kaempferol-3-O- α-L-arabinofuranoside (juglanin) [2].-Mp 220-222 ${ }^{\circ} ;[\alpha]^{25} \mathrm{D}-142^{\circ}(\kappa=0.00047$, $\mathrm{MeOH})\left[\mathrm{lit} .(20), \mathrm{mp} 223-225^{\circ}\right.$; lit. $\left.(21),[\alpha]^{20} \mathrm{D}-127^{\circ}(c=0.5, \mathrm{MeOH})\right]$; ir $\nu \max (\mathrm{KBr}) 3300,1654,1608$, $1506,1100-1200 \mathrm{~cm}^{-1} ;$ eims $m / z[\mathrm{M}-\text { ara }]^{+} 286(100), 229,184,148,121(28), 93(10) ;{ }^{1} \mathrm{H} \mathrm{nmr}$, see Table 2; ${ }^{13} \mathrm{C}$ nmr, see Table 3.

Quercetin-3-O- α-L-arabinofuranoside (avicularin) $[3]-\mathrm{Mp} 178^{\circ} ;[\alpha]^{25} \mathrm{D}-152^{\circ}(c=0.00125, \mathrm{MeOH}$) [lit. (20), mp 213-214 ${ }^{\circ}$; lit. (21), $[\alpha]^{20} \mathrm{D}-109.7^{\circ}(c=0.31, \mathrm{MeOH})$; ir $\nu \max (\mathrm{KBr}) 3300,1656,1606$, $1571,1509,1446,1362,1240,1168,1088,1004 \mathrm{~cm}^{-1}$; eims $\mathrm{m} / \mathrm{z}[\mathrm{M}-\mathrm{ara}]^{+} 302(100), 273,245,153(11)$, 137 (17); ${ }^{1} \mathrm{H} \mathrm{nmr}$, see Table 2; ${ }^{13} \mathrm{C}$ nmr, see Table 3.

Acetylation of 3-Compound 3 (8 mg) was acetylated with 2 ml of $\mathrm{Ac}_{2} \mathrm{O}$-pyridine ($3: 2$) for 4 h at room temperature to afford 3a: ir $\nu \max (\mathrm{KBr}) 2943,1778,1745,1645,1435,1371,1211 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ $\left(\mathrm{CDCl}_{3}\right) \delta 2.02(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.09(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.12(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.32(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.33(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$, $2.35(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.44(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 3.73\left(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-4^{\prime \prime}\right), 3.98\left(1 \mathrm{H}, \mathrm{dd}, J=12.0\right.$ and $\left.5.1 \mathrm{~Hz}, \mathrm{H}_{2}-5^{\prime \prime}\right), 4.18$ $\left(1 \mathrm{H}, \mathrm{dd}, J=12.0\right.$ and $\left.3.3 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}-5^{\prime \prime}\right), 4.97\left(1 \mathrm{H}, \mathrm{dd}, J=5.4\right.$ and $\left.1.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime}\right), 5.47(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}, \mathrm{H}-$ $\left.2^{\prime \prime}\right), 5.79\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1^{\prime \prime}\right), 6.85(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}, \mathrm{H}-6), 7.29(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}, \mathrm{H}-8), 7.34(1 \mathrm{H}, \mathrm{d}, J=8.7$ $\left.\mathrm{Hz}, \mathrm{H}-5^{\prime}\right), 7.85\left(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 7.86\left(1 \mathrm{H}, \mathrm{dd}, J=8.7\right.$ and $\left.1.8 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right)$.

Kaempferol-3-O- β-D-glucopyranoside (astragalin) [4]-Mp 231-233 ${ }^{\circ}$ [lit. (21), mp 175-178 ${ }^{\circ}$]; ir v $\max (\mathrm{KBr}) 3406,1745,1654,1608,1498,1362,1209,1179,1073 \mathrm{~cm}^{-1}$; eims $m / z[\mathrm{M}-\mathrm{glc}]^{+} 286(100)$, 229 (11), 184, 153 (7), 121 (26); ${ }^{1} \mathrm{H} \mathrm{nmr}$, see Table 2; ${ }^{13} \mathrm{C}$ nmr, see Table 3.

Myricetin-3-O- α-L-arabinofuranoside (betmidin) [5].-MP $158-160^{\circ}$ [lit. (5), mp 240-242 ${ }^{\circ}$; $[\alpha]^{25} \mathrm{D}$ $-134^{\circ}(c=0.00076, \mathrm{MeOH})$; ir $\nu \max (\mathrm{KBr}) 3400,1653,1608,1506,1354,1308,1200,1024 \mathrm{~cm}^{-1}$; eims $m / z\left[\mathrm{M}\right.$-ara ${ }^{+} 318(100), 289(9), 216,166,153(41), 114(34), 73(48), 57(76) ;{ }^{1} \mathrm{H} \mathrm{nmr}$, see Table $2 ;{ }^{13} \mathrm{C}$ nmr, see Table 3.

ACETYLATION OF 5.-Compound 5 (10 mg) was acetylated with 2 ml of $\mathrm{Ac}_{2} \mathrm{O}$-pyridine (3:2) for 4 h at room temperature to afford 5a: ir $v \max (\mathrm{KBr}) 2945,1778,1747,1653,1371,1188,1057 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ $\left(\mathrm{CDCl}_{3}\right) \delta 2.04(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.09(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.13(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.32(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.33(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc})$, $2.36(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 2.45(3 \mathrm{H}, \mathrm{s}, \mathrm{OAc}), 3.91\left(1 \mathrm{H}, \mathrm{d}, J=3.3 \mathrm{~Hz}, \mathrm{H}-4^{\prime \prime}\right), 4.05(1 \mathrm{H}, \mathrm{dd}, J=12.6$ and 4.8 Hz , $\left.\mathrm{H}_{\mathrm{a}}-5^{\prime \prime}\right), 4.20\left(1 \mathrm{H}, \mathrm{dd}, J=12.0\right.$ and $\left.3.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}-5^{\prime \prime}\right), 5.00\left(1 \mathrm{H}, \mathrm{dd}, J=5.7\right.$ and $\left.1.8 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime}\right), 5.51(1 \mathrm{H}, \mathrm{br}$ $\left.\mathrm{s}, \mathrm{H}-2^{\prime \prime}\right), 5.79\left(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1^{\prime \prime}\right), 6.86(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}, \mathrm{H}-6), 7.32(1 \mathrm{H}, \mathrm{d}, J=2.1 \mathrm{~Hz}, \mathrm{H}-8), 7.73(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-$ 2^{\prime} and H-6').

ACKNOWLEDGMENTS

We thank Dr. Hyeong Kyu Lee, Genetic Engineering Research Institute, Korean Institute of Science and Technology, for identification and collection of the plant material.

LITERATURE CITED

1. F. Daels, J. Pharm. Belg., 10, 353 (1928); Chem. Abstr., 23, 4016^{5}.
2. T. Ota, Z. Physiol. Chem., 263, 221 (1940); Chem. Abstr., 34, 3740°.
3. G.G. Zapesochnaya, Chem. Nat. Comp., 15, 17 (1979).
4. S.S. Kang, Kor. J. Pharmacog., 12, 208 (1981).
5. K. Yasukawa, H. Ogawa, and M. Takido, Phytochemistry, 29, 1707 (1990).
6. M. Takani, K. Ohya, and K. Takahashi, Chem. Pharm. Bull., 27, 1422 (1979).
7. T. Popoff and O. Theander, Acta Chem. Scand. B, 31, 329 (1977).
8. L.N. Lundgren, T. Popoff, and O. Theander, Phytochemistry, 20, 1967 (1981).
9. A.W. Schrecker and J.L. Hartwell, J. Am. Cbem. Soc., 77, 432 (1955).
10. P.B. Hulbert, W. Klyne, and P.M. Scopes, J. Chem. Res. (M), 401 (1980).
11. M. D'Agostino, V. De Feo, F. De Simone, and C. Pizza, Pbytochemistry, 28, 1773 (1989).
12. R. Aquino, M.D'Agostino, F. De Simone, and C. Pizza, Phytochemistry, 27, 1827 (1988).
13. S.F. Fonseca, J. de P. Campello, L.E.S. Barata, and E.A. Ruveda, Phytochemistry, 17, 499 (1978).
14. R. Kasai, M. Suzue, J. Asakawa, and O. Tanaka, Tetrabedron Lett., 18, 175 (1977).
15. K. Tori, S. Seo, Y. Yoshimura, and H. Arita, Tetrahedron Lett., 18, 179 (1977).
16. L.F. Johnson and W.C. Jankowski, "Carbon-13-NMR Spectra." Wiley-Interscience, New York, N.Y., Spectra Nos. 246 and 345.
17. S. Seo, Y. Tomita, K. Tori, and Y. Yoshimura, J. Am. Cbem. Soc., 100, 3331 (1978).
18. K.R. Markham, B. Ternai, R. Stanley, H. Geiger, and T.J. Mabry, Tetrabedron, 34, 1389 (1978).
19. S.S. You, D.S. Han, S.J. You, B.S. Chong, and C.K. Sung, "Natural Products Chemistry." Young Lim Co. Press, Seoul, Korea, 1989, pp. 88-89.
20. S. Matsuura, M. Iinuma, E. Ito, and H. Takami, Yakugaku Zassbi, 98, 1542 (1978).
21. T. Kato, F. Yamane, and Y. Morita, Shoyakugaku Zasshi, 43, 266 (1989).

Received 4 June 1993

[^0]: ${ }^{2}$ Data recorded in $\mathrm{CD}_{3} \mathrm{OD}$. Figures in parentheses are J values in Hz . The assignments were made by COSY.

